Appendix L

ARCHITECTURE AND CONSTRUCTION YOUTH APPRENTICESHIP

DESIGN/PRE-CONSTRUCTION PATHWAY ARCHITECTURAL PLANNING (UNIT 4)

Competency

1. Draw a site plan

Performance Standard Condition

Competence will be demonstrated

at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Compile site measurements and other data
- Review design data and dimensions of site layout
- Analyze measurement, service, utility, zoning & coding, and ecosystem data with worksite professional
- Select size and scale for plan
- Use architectural drafting software OR draw manually
- Identify parcel features
 - Indicate existing ground features on drawing (e.g., utilities, contours, landscape features, etc.)
 - Indicate boundaries, easement, buffer areas, and established setbacks of site
 - Draw existing structures
 - Locate and identify bench mark and elevation level
- Indicate modifications of any existing site elements
 - Draw proposed contour lines and indicate any new grade elevations
- Place proposed structure on site with favorable orientation considering site-specific information
 - Draw utility lines and connections
 - Draw additional construction extending beyond exterior walls of structure (e.g., driveways, sidewalks, patios, decks, proposed utilities, etc.)
 - Draw landscaping elements
- Estimate the amount of cut and/or fill necessary to build a structure
- Estimate the increase in storm water runoff from a site
 - Apply Low Impact Development techniques to reduce the impact of development on the storm water runoff quantity and quality
- Indicate scale of drawing and view title
- Indicate north arrow
- Check drawing

Learning Objectives

- Explain the purpose of a site plan
- Describe the process to draw a site plan
- Explain the purpose of contour lines
- Define easement, buffer area and setback as they relate to local codes and construction sites

- Describe how choice of structure placement on site relates to energy, utility, sanitation, and drainage requirements
- Explain how to locate and identify an elevation level
- Discuss issues of storm water run-off and methods to reduce
- Identify site factors which affect the design of a house, including neighborhood property values, review board controls, and access to the site
- · Classify roadways according to level of use
- Describe additional features to be considered for commercial properties such as pedestrian access, vehicular access, parking, storm water runoff storage/collectors
- Define cut and fill
- Explain how to calculate cut or fill needed
- Discuss the need to prevent/control wind or water erosion in land development and construction

Competency

2. Draw sectional & elevation views

Performance Standard Condition

Competence will be demonstrated

· at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- · Review design data and layouts
- Use architectural drafting software OR draw manually

EXTERIOR

- Draw grade line
- Project construction lines from plans
- Indicate finished floor level(s)
- Indicate finished ceiling level(s)
- Draw and detail windows and doors
- Draw roof outline
- Letter wall and roof finishes, roof pitch, chimney, decks, and porches
- · Add dimensions, scale, notes, labels and view title
- Check drawing

INTERIOR

- Indicate true width of walls
- Indicate all openings in interior or exterior walls
- Indicate typical sections of standard built-in features
- Note wall materials or finish
- Indicate fixtures, built-ins, trim and molding, and utilities
- · Add dimensions, scale, notes, labels and view title
- Darken finish lines
- · Check drawing

Learning Objectives

- Explain how to draw exterior elevations from one and two point perspectives
- Describe how the grade line is determined
- Distinguish between the characteristics of various exterior styles
- Explain how to draw interior elevations from one and two point perspectives
- List common abbreviations and symbols for interior fixtures, built ins and utilities
- List standard built ins in common residential and commercial structures

Competency

3. Draw a floor plan

Performance Standard Condition

Competence will be demonstrated

· at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Review preliminary sketches, notes and specifications
- Use architectural drafting software OR draw manually
- Lay out exterior limits of structure
- Block out exterior and interior walls with appropriate thickness
- Indicate openings in exterior and interior walls
- Draw door and window sizes
 - Use a manual to reference basic door types, sizes, ADA requirements, and drawing conventions
 - Use a manual to reference basic window types, sizes, extent openable, and drawing conventions
- Draw other floor plan features
 - Draw cabinetry, appliances, plumbing fixtures, fireplaces and stairs
 - Draft basic electrical symbols, including switches, duplex receptacle outlets, ceiling and wall-mounted lights, and circuit lines
 - Draft second-floor and basement plans
- Use appropriate leads and line weights for both construction and finish lines
- Add dimensions, notes and room labels
- Draw material symbols
- Indicate scale of drawing and view title
- · Indicate north arrow
- Check drawing

Learning Objectives

- Describe how detail schedules are written from a floor plan
- Discuss how dimensions of materials/fixtures impact a floor plan and vice versa
- State the ideal orientation, location relative to traffic patterns and plumbing, and egress requirements of bedrooms
- Describe the process of overlay drafting
- Describe the role of layers in CAD floor plan drafting
- Identify the general sizes and drawing conventions of cabinets, fixtures and appliances found in kitchens, bathrooms, and utility rooms
- Identify the finish material symbology use on floor plans
- Differentiate between types of fireplaces
- Delineate miscellaneous floor-plan symbols, including those for hose bibbs, concrete slabs, attic crawl space access, floor drains, and cross-section symbols

- Articulate how CAD floor-plan symbols are stored, placed and moved, and how attributes are used
- Discern when it is appropriate to place electrical symbols on a floor plan and when they should be placed on a separate sheet
- Define basic electrical terms
- Identify basic service specification requirements, including service capacity, service entrance, meter base, and distribution panel locations

Competency

4. Develop a stair section drawing

Performance Standard Condition

Competence will be demonstrated

at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Review floor plan and stair specifications
- Use architectural drafting software OR draw manually
- · Confirm floor to floor heights
- Draw finished floor and finished ceiling lines heights
- Calculate and layout risers, treads and landings
- Draw stringer
- Indicate framing around stairs
- Identify materials used to construct stairs
- Draw trim features (e.g., handrail(s), tread covers, etc.)
- · Dimension total rise and run
- Indicate headroom clearance and stairwell opening
- · Add dimensions, notes and labels
- · Check drawing

Learning Objectives

- Explain how to divide any length into an equal number of sections
- Define basic terms and requirements used in stair design and construction
- Explain how to calculate rise and run dimensions for stairs
- Compare construction of open and closed stair designs
- List minimum stair width, tread, riser, landing, and head clearance requirements, as well as known drafting criteria for straight-run, winding, and spiral stairs
- Discuss how to calculate and incorporate headroom clearance and stairwell opening
- Distinguish between requirements for straight, u-shaped, and exterior stairs

Competency

5. Draw a floor system & foundation plan

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Review floor plan, sketches, notes, and specifications
- **Use architectural drafting software** OR draw manually
- Copy common features from floor plan
- Draw the exterior outline of the foundation wall
- · Draw the inside wall of the foundation after scaling the wall thickness
- Lay out the footings and structural information
- Draw foundation, structural supports and footing outline
 - Draw floor/joist foundations
 - Draw post-and-beam foundations
 - o Draw foundations for columns, chimneys, etc.
- Draw in the floor framing plan showing the layout of girders and joists
- Indicate floor drains, bridges or plates
- Add dimensions, scale, notes, labels and view title
- Indicate symbols and references
- Indicate north arrow
- Check drawing

Learning Objectives

FOUNDATIONS

- Compare the various foundation types and describe their use
- · List common materials used for foundations
- Discuss requirements for foundations based on load requirements
- Compare types of foundation construction methods
- Identify how and why slabs may require protection from ground moisture

FLOOR FRAMING

- Distinguish between control, construction, and isolation joints
- Identify basic components, sizes and spacing for joist (stick) and post-and-beam framing
- Compare and contrast the three common framing systems used with wood construction: balloon, platform, and post-and beam
- Discuss how the shape of the ground affects the framing method
- Identify conventional floor framing components and know their typical sizes and spacing
- Explain the function of wood posts and steel columns in floor framing
- Compare and contrast conventional floor joists, open web floor joists, I-joists, and laminate veneer lumber (LVL)
- · Define cantilever
- State methods of bracing floor joists

Competency

6. Draw a framing plan

Performance Standard Condition

Competence will be demonstrated

· at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Review floor plan, foundation plans and construction specifications
- Use architectural drafting software OR draw manually
- · Draw footing and foundation walls
- · Draw supporting girders and joists
- Indicate dimensions of the bearing walls
- Draw in locations of beams and columns with direction of span and size
- Draw waterproofing and ground control for foundation walls, around footings (drain tiles) and under basement floor slabs
- Draw termite protection
- Draw external stud wall construction
- Draw floor and ceiling construction
- Draw wall and ceiling insulation
- Add labels, notes and dimensions
- Indicate material symbols
- Indicate scale of drawing and view title
- Indicate north arrow
- Check drawing

Learning Objectives

FRAMING

- Compare and contrast the three common framing systems used with wood construction: balloon, platform, and post-and beam
- Cite the advantages & disadvantages of steel framing
- Describe the classifications of concrete masonry unit (CMU) construction
- Define basic brick-laying terms and describe insulation and reinforcement options
- Define footing
- Compare types of footings

LOADS

- Distinguish between bearing and non-bearing walls
- Identify categories of loads acting on structures
- Explain how load-bearing factors are considered in structural design
- Describe the physics of structures to bear loads via walls, columns, and beams
- Explain the characteristics of structural beams, cables, trusses, and other structural forms
- Determine loads applied during the design of a structure using load tables and appropriate mathematics

WALLS

- Name the basic components of wall framing, and know their typical sizes and spacing
- Differentiate between double- and single-wall constructions
- Compare external and internal wall construction
- Describe methods for termite control in building design
- Differentiate between three phases of electrical installation: temporary, rough-in, and finish

Competency

7. Draw a roof framing plan

Performance Standard Condition

Competence will be demonstrated

· at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Review floor plan, foundation plans and construction specifications
- Use architectural drafting software OR draw manually
- Draw exterior wall outline from floor plan
- Confirm roof style (e.g., gable, shed, hip, etc.) and cornice overhang size
- Draw center ridge board(s)
- Draw all rafters, jack rafters, intersecting pieces, etc., with specified on-center spacing
- Indicate any special construction (e.g., around chimney, etc.)
- Draw gutter and method of roof ventilation
- Add labels, notes and dimensions
- Indicate material symbols
- Indicate scale of drawing and view title
- Indicate north arrow
- Check drawing

Learning Objectives

- Define roof pitch
- Outline common components and their function required in roof framing
- Identify and explain framing terms common to both conventional and trussed roofs
- Define the basic members of conventionally framed roofs, as well as know typical sizes and spacing
- Contrast vaulted roof framing from standard roof/ceiling systems
- Define truss and basic truss terminology
- Identify basic truss types
- Describe how trusses are secured to bearing points
- Explain the role of metal hangers
- Identify the functions of the roof overhang and gutter
- Explain the basic flow of heat, air and moisture through a facility and methods used to control them
- Explain the need for air flow and ventilation in structures

Competency

8. Develop sustainable/conservation elements into a design

Performance Standard Condition

Competence will be demonstrated

at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Review roof framing, floor plan, foundation plans and construction specifications
- Apply the principles of conservation to design plan
- Evaluate construction techniques for energy conservation in framing, caulking, use of vapor retardants, and insulation procedures
- Evaluate the insulation value for walls, floors, vaulted and flat ceilings
- Evaluate the common building products containing formaldehyde-based resins and solvents, as well as appliances for causes indoor pollution
- Calculate the heat loss through one wall of a conditioned building
- Calculate the heat loss for a building envelope with given conditions appropriate for the project

Learning Objectives

- Discuss architectural design and building practices that impact the environment
- Describe the building elements covered by the model energy code
- Explain the Green Building program and Sustainable Building design
- Identify climatic and geographic design criteria, which will have bearing on the design of a structure
- Identify light source types
- Identify daylight design strategies
- Identify energy design strategies
- Explain how window and door details can be designed to provide energy efficiency
- Define R value factors in building
- Explain why caulking is effective, and identify places where caulking is best used
- Explain why vapor barriers help save energy, and name locations where vapor retarders should be installed
- Identify the venting requirements of garages
- Compare types of insulation
- Identify R value information for common types of insulation
- Calculate the recommended roof overhang for different latitudes, as well as specify other methods of achieving alternative overhang protection
- Articulate how the idea of envelope design works, cite its principle components, and discuss the disadvantages of the concept, including safety concerns
- Identify methods of reducing indoor pollution

Competency

9. Review completed architectural plans and documents

Performance Standard Condition

Competence will be demonstrated

· at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Compare completed plan with architectural/engineering notes/data, manufacturers' catalogs and construction specifications
- Check drawing for accuracy (e.g., wall placement and size, feature sizes, door/window placement, etc.)
- Check and verify dimensions
- Check and verify notes, lettering, symbols and references
- Check and verify title block information
- Check plan for line quality and type for feasibility, thoroughness, accuracy, code compliance
- Submit completed plans to worksite professional for approvals

Learning Objectives

- Discuss the various systems components of building structures including lighting, heating, ventilation, air conditioning, mechanical, electrical, plumbing, communication and vertical transport on completed plans
- Explain how detailed technical construction documents, schedules, and plans are created from the architectural plan

Competency

10. Revise drawings

Performance Standard Condition

Competence will be demonstrated

at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Review drawing revision (change) procedures
- · Identify drawing to be modified
- Use architectural drafting software OR draw manually
- · Make modifications to drawing
- Construct a revision table on drawing
- Record changes properly on revision table
- Apply appropriate line thickness and type
- Check drawing

Learning Objectives

- Compare how drawing changes are made and tracked on CAD and/or manual drawings
- Explain how drawing revisions are tracked to other connected technical documents and materials specifications documents
- Discuss the impact on resources of revisions to completed plans

Competency

11. Construct a Bill of Materials

Performance Standard Condition

Competence will be demonstrated

at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Review architectural plan with worksite professional, engineering notes/data, manufacturers' catalogs and construction specifications
- Utilize appropriate reference handbooks
- Convert architectural drawing scale to full dimensions for a construction project
- Calculate the required materials needed
- Select building materials and assemblies upon evaluation that meet project specifications
- Use appropriate combinations of building materials and components that satisfy the requirements of building programs

Learning Objectives

- Explain how to assign numbers to materials required for construction
- Explain how to calculate materials needed from an architectural plan
- Explain criteria used for building materials selection
- Discuss the use of sustainable construction materials and products
- Explain how factors such as force, torque, and shear impact choice of structural materials
- Describe applications and restrictions pertaining to the use of construction materials

Competency

12. Assist to develop architectural detail schedules

Performance Standard Condition

Competence will be demonstrated

- at the worksite
- while assisting a worksite professional

Performance Standard Criteria

Performance will be successful when learners:

- Collect notes and format(s) pertaining to schedules
- Use architectural drafting software OR draw manually
- · Interior finish schedule
 - Lay out schedule to fit given format
 - Lay out lettering guidelines
 - Make headings for each schedule
 - Define details for interior finish
 - Letter information into finish schedule
 - Check drawing
- Door and window schedules
 - Lay out schedules on floor plan
 - o Make headings for window schedule
 - Make headings for door schedule
 - Define details
 - Letter schedules
 - Check drawing
- Door details
 - Review wall section, floor plan, construction specifications and manufacturers' catalogs
 - o Draw head, jamb and sill details, including interior and exterior trim finishes
 - Add dimensions, notes and labels
- Window details
 - Review wall section, floor plan, construction specifications, and manufacturers' catalogs
 - Draw head, jamb and sill details, including interior and exterior trim finishes
 - o Add dimensions, notes and labels

Learning Objectives

- Articulate the need for schedules, identify information described within it, and how to configure and place schedules on a sheet
- Describe the difference between water supply, distribution, sanitary and storm drainage systems
- Identify structural symbols on technical drawings
- Identify plumbing, piping and drainage symbols on technical drawings
- Identify electrical & wiring symbols on technical drawings

Competency

13. Assist to coordinate architectural project activities

Performance Standard Condition

Competence will be demonstrated

- at the worksite
- while assisting a worksite professional

Performance Standard Criteria

Performance will be successful when learners:

- Review plans and schedules for work to be completed
- Note timeframes, overlaps, and allowances for work completion
- · Compile contracts, permits, and licenses as needed
- Coordinate work between trades based on plan
- Schedule contractor work dates
- Plan and route materials shipments
- Follow up to ensure movement of materials and equipment needed to meet established deadlines
- Monitor work completion deadlines
- Track and report any construction issues to worksite professional
- Communicate in a timely and accurate manner to correct parties

Learning Objectives

- Explain how to read architectural schedules and work plans
- List methods of productivity measurement for architectural projects
- Discuss how to schedule contract work and delivery functions with respect to project schedule and requirements
- Compare contracts, licenses and permits uses and the information required on them